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SUMMARY

When investigating the propagation of cosmic rays in interplane-
tary space, solar wind is considered as given and independent of cosmic
rays. It is shown that, considering rigorously the problem, one must
take into account the inverse action of cosmic rays on the fluxes of
solar plasma, which is materialized by way of magnetic fields. The in-
tegral-differential equation is derived, which describes the interaction
of solar wind with cosmic rays, taking into account the intensity modu-
lation and the deceleration of solar wind by cosmic rays.
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* *

During the investigation of modulation of galactic cosmic rays and the
propagation of solar cosmic rays in interplanetary space, solar wind is con-
sidered as given and independent of cosmic ray intensity. In particular, in
the equation, describing the propagation of cosmic rays in interplanetary spa-

ce and the modulation of their density n [1]
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the particle fluxes ja with charge Ze (0 =1, 2, 3, 4 are the spatial coordi-
nates r, 9, ¢ and therigidity R; & is the function of the source) are deter-
mined by the given solar wind velocity u(r), while the pressure of galactic
cosmic rays is comparable or even greater than the pressure of the galactic
magnetic field [2]. This is why one must take into account that as the in-

tensity of cosmic rays varies in time (with the variation of solar activity)



and in space (with recession from the Sun), the action of cosmic rays on
solar wind varies also, which leads in its turn to the variation of u(r).

In the first part, we shall find the equation describing the interaction of
solar wind with cosmic rays. In the second part [3], its approximate solu-
tion is found under specific assumptions on the properties of the low-energy

part of cosmic radiation beyond the limits of the solar system.

Integral-Differential Equation describing the Solar Wind Interaction

with Cosmic Rays. It was noted above that solar wind not only acts substan-

tially on cosmic rays, but undergoes itself the influence of the latter,
whereupon this influence is so substantial that it may be one of the basic
causes of variation of solar wind velocity and limitation of its propagation
in the interstellar space. This is why all the works where the modulation of
solar wind by cosmic rays is investigated and the solar wind is considered
as given (see, for example, [1l, 4~6]), are not strict. It is necessary to
take into account the inverse action of cosmic rays on solar wind, i. e. to

resolve a self-consistent problem.

Let us consider the action of cosmic rays on the radial motion of an
isolated plasmoid with frozen-in magnetic field, the transverse and longitu-
dinal dimensions being respectively { and L. We shall consider that in the
first approximation cosmic rays are distributed isotropically in interplane-
tary space. Then the pressure exerted by them will be isotropic, and at the

~distance r from the Sun the pressure will be determined by their energy density

\ n(r,B) By dRt,
b
where Ex is the kinetic energy of particles, n(r, R) is the hard spectrum of

cosmic ray concentration, The deceleration of the isolated plasmoid will be
determined by the difference in pressure of cosmic rays on the forward and

reay surfaces:

M E.dR. (2)
Ar

Flec =12 {[u(r,R)—n(r4 L, R)] FxdR = —2L
The concentration of plasma, N(r), at the distance r from the Sun on ac-

count of continuity law, will be
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N(r) = N guy r(*: uir-2 (4)

where ry = 1 a.u. is the distance Earth - Sun; Ns=N(rs); up = u(rs), where
u is the radial velocity of plasma motion. Then the mass of the isolated area

of plasma will be
M == PLN sty u—tr-2M,, (4)

where Mp is the mass of the hydrogen atom. On the basis of (2) and (4) we
shall find the acceleration of deceleration du/dt = Tgeo./M and the velocity
gradient

o

du re Sdn(r, )
dr Néuérzézll,,s dr

Il R, (5)

1]

where it is taken into account that udt = dr.

The multiplier dn(r, R)/dr, entering into (5), is determined by plasma
velocity u(r, t) and by transport free path for pafticle scatteriﬁg A(r, R, t)
by means of a nonstationary equation of anisotropic diffusion [1], or, to be
more precise, by the kinetic equation [7]. However, it is then impossible to
obtain a simple analytical expression and difficult to investigate Eq.(5).
This is why we shall make use of the following two cases, substantially alle-
viating our problem. First, as is shown in [1], when investigating long-
period variations of cosmic rays, one may use with great precision the sta-
tionary equation, considering t as a parameter. Secondly, according to [1],
a rigorous analytical solution of the modulation problem in two simplest
cases, when A = const and when A v r, may be represented with a sufficient

precision (to 10%Z) in the form

T

n(r, R, t) = ny(R)cxp [—“S ?_‘x((%%%]’ (6)

r

where no(R) is spectrum of cosmic ray concentration beyond the limits of
solar wind; r, are the dimensions of solar wind assigned in [8] on the basis
of hysteretic phenomena in cosmic rays; v is the velocity of particles.
However, in our case one should spread the integration over r in the right-

hand part of (6) from r to ®, inasmuch as the solar wind limitation is



materialized by the quantity u(r,t) with the aid of Eq.(5). As already
noted, we may consider in accord with [1, 9], t in (6) and (5) as a paramete;
and in the following we shall drop it. Differentiating (6) with resbect to r
and substituting into (5), we shall obtain for the determination of u(r) the

integral-differential equation

.. du Burt T ng () Iy cxp[ oo3udr] iR, @
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The substitution of velocity u(r), determined with the aid of (7), into (6)

(as r * ) will allow us to find also u(r,R).

Transformation of the Integral-Differential Equation into a Nonlinear

Differential Equation of Second Order. Selection of ng(R). According to [2],

for the density spectrum of nucleons beyond the limits of the modulating volu-

me, one should choose the expression

&) {amm if R R,
n =
° 0 if R < Rum. (8)

Here y ~1p5, no(R) per nucleon cm™3*Bv=!. As to the quantity Ry 4., it may be
asserted on the basis of experimental data (see [2]) that it is knowingly
smaller than 0.5 Bv (the value Rpin M 0.5 Bv corresponds to energy density

of cosmic rays in the interstellar medium v 1 ev/cm®). Subsequently, cal-
culations will be conducted for Rpjp = 0.5, 0.2, 0.1 and 0.05 Bv. Taking into
account Qhat in the interstellar medium cosmic rays are distributed nearly iso-
tropically and that the number of nucleons in nuclei and Protoms is about iden-

tical, we find

hlén R ~ ~3.np,1e5
a4z — 14~ 6.10- nucleon cm™ °*Bv 9
(4

Approximate Expression for Ex. For protons the kinetic energy is

Ex = b( YRZ + 0.88 — 0.94) ergs;
R is given in Bv, b = 1.6°10"3 is the conversion factor to the CGS system.
For nucleons in nuclei Ei = b( /EZ_;TETEZ-— 1.88). 1Inasmuch as the number of
nucleons in nuclei and protons is about identical, the mean value of Ek will
be:
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0,44bR2
1+ 04R (10)

E. — 05b[yR: + 0,88 4 VI + 352 — 2,82 =

where the last expression is valid with a relative error of no more than 10%:

R, v 0 0.5 1 2 4 8
E
Kk ex 0.90 0.98 1.07 1.09 1.06 1.00 0.90
Ex appr

Approximate Expression for v(R).  Inasmuch as for protons v(R) = c(R® +

1
+ 0.88)" Z , and for nucleons in nuclei v(R) = cR(R?® + 3.52)"1/2 the average

is v(R) = 05 cR[(R? + 0,88)~"% + (R? + 3,52) '] = cR(R? + 1,57)~'h, (11)

where the last expression is correct with a relative error not exceeding 6%:

R, Bv 0 0.5 1 2 4 8 o
Ek ex 1.06 1.05 1.04 1.02 1.01 1.00 1.00
k appr

Approximate Expression for the Dependence of A on R, According to {10},

in the region (R & 1 Bv) is almost independent of R. For 32 R>1py, A ~ 7R
[11]. In the region R > 2 — 3 Bv, A rises by v R through R " 15 Bv [9].

This is why it is possible to approximately represent

A = 0,63 AYRE 1 1,57, (12)
where Ao is the transport free path for scattering at R~ 1 Bv. The character

of A dependence on R is as follows:

R, Bv O 0.5 1 2 4 8 16
A /A, 0.79 0.85 1.00 1.48 2.63 5.1 10.1

Note that the expression (12) satisfactorily describes the dependence of
A on R only for R . 15 Bv (according to [9], for R > 15 Bv, we apparently

have A v R ; however, this energy region is no longer essential for our problem).

Density of Cosmic Rays in Interstellar Space. Strictly speaking, the form

of the function n,(R) in the region of small rigidities is unknown. In accord
with [2], we choose nO(R) v R™2:%, The energy density of cosmic rays Wer in

the interstellar space is then very feebly dependent.on the quantity Rpyip,-
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vo= S no(B)EE(RR)dIt 2 0,84 (—-z-—-arctgl’m) evecm~?, (13)

Rmin

where the last expression was obtained by utilizing for Ei(R) formula (10),

the values of wcr as a function of_Rmin are as follows:

Rpins BV 10 2 1 0.5 0.2 0.1 0.05 0
Wers ev/cm® 0.39 0.71 0.84 0.96 1.09 1.15 1.20 1.32

Transformations of Eq.(7). Substituting (8), (10) - (12) into (7), we

obtain
_ u,Ao 2 R
kur? = 5 T+ 67;7?6—6(", 7u)/It dR (14)
min '
where
2,1ab Br, u)= m4,8udr
NéltéCl% M ! ( ! —rS cAp * (15)

By variable substitution we transform Eq.(14) to the form

anm
u' Ao Zv-1e%
— R-vH — =
furt P §, eogp ot V(B Fow). (1)

The results of numerical calculations of Y(B, Rpipn) at y = 1.5, are com-

piled in Table 1.

TABLE 1

!
) .
Ruin. Bo 0 0,1 0,2 0.3 0,5 0,7 1,0 1,5 2 4
0,5 ‘l 40 1.30 | 1,16 11,053 10,900 | 0,739 | 0,590! 0,439 |0,333 10,166 0 ,u48
0,2 284 1 2,33 | 150 {1,595 [ 1,183 |0,895 | 0,657| 0,459 10,339 |0,166 UO18
0,1 4,60 | 3,19 | 2,32 11,805 11,235 {0,912 | 0,65910,460 10,310 10,166 u048
L—0,0S 7.!5 ) 3,80 | 247 11,850 | 1,240 |0,913 | 0,660{0,460 {0,340 |u,166 0,048

The asymptotic expressions for Y(B, Ry;,) at p<<1 'and B>1 are the

following

Y (ﬁ Ruin) = 2 [ 1y min — Vﬁércié O, }iRmm)—‘/] — B[Rl 13—
—0,4R0 + (0, 4)/=arctg(0 4Rypin)”" 1 for B, (17)

Y(ﬁ; len) =~ 1,5-p~ for Pp>1. (18)



Assume that Eq,(16) is resolved relative to B, i.e. that B = B(Y, Ryin)

has been found. Then, inasmuch as

% _ dp ar as)
dr ay dr

and, according to (16) and (17),

dp Aga dY (@ Mo+ wAS)urt— (2 wr)uho 209
dar T ek dr - k(ur?)? '
we obtain
%p? 2y (W) A
P — e T L P (21)
M*@(Y) p + P 2o
Eq.(21) is written in dimensionless variables _
wzu/uwi p:r/ra, A=A0/r6 (22)
and the denotation ¢(Y) Eslﬂi/ﬁﬁﬂ The dimensionless parameter
4,8k 2 1
e 2ORTe 10D 64 100, (23)

c == ]\‘Té—c“z‘jﬁx;
is determined only by solar wind concentration near the Earth's orbit and by

the density of cosmic rays in the interstellar space (coefficient a).

Determination of Function ¢(Y). 1In dimensionless variables (22), and

according to (16) and (23), parameter Y will be

Y = —2,5-10"2u s N hop=2p" 2. (24)
Functions ¢(Y) = dB / dY, which are found by graphical differentiation
with respect to data of Table 1, are compiled in Table 2( when finding dB / 4y
at small and great B, asymptotic expressions (17) and (18) were used). Note
that Y varies within the limits O € Y € Ymax, where Ymax = 1.34, 2.84, 4.60
and 7.15, respectively at Rpin = 0.5, 0.2, 0.1 and 0.05 Bv.

TABLE 2

_ Y 1,34 11,30 [1,15 |1,053l0,900| 6,759] 0,590] 0,439] 0,33 | 0,166/ 0,048
Rawn =05 BV |_ o (y)|0,5051,28 (1,31 {1,62 (1,58 | 1.63 { 2,30 | 3,99 | 6,23 { 21,3 | 58,3
Row =02 B Y | 2,84 |2,33 11,90 |1,595]1,183| 0,895 0,657| 0,459] 0,339 0,166| 0,048
min =02 BV |_oy)| 0,149)2,166/0,287(0,397/0.686| 0.975( 1,71 | 3,29 | 5.60 | 21,3 | 158.2
Rae = 0.1 B Y | 4,60 3,19 12,32 |1,805/1,235| 0,912 0,657 0,459] 0,339] 0,166] 0,048
Hwin =01 Bv |_q(y)| 0,051)),099)),166|1,264{0,532| 0,355| 1,71 | 3,29 | 5,60 | 21,3 | 158.3
Russ — 005 7,15 13,80 12,47 |1,85 |1.240] 0.912] 0,657| 0,459] 0,339] 0,166| 0,048
min = 0,05 Bv | _¢(r)|0,0175{0,046[,112,216{0528| 0.955] 1.71 | 3,29 | 5.60 | 2,3 | 158.3




It follows from Table 2 that in the region 0.05 £ Y € Ypax function ¢(Y)
may be approximately (with relative precision *10%) represented in the form
@(Y) = —08 Y2 (25)
As Y + 0, we have in accord with (18), ¢(Y) = -0.87 Y /s . This differs
little from (25). Besides, the region of véry small Y (correspondnng to the

regions of very great B) has no essential value for our problem and this is

why we shall spread the variation of Y over the entire region.

Differential Equation for the Determination of Y. Substituting (25) into

(21) and taking into account (24) and (25), we shall obtain a nonlinear differ-

ential equation of second order for the determination of Y
V= §[5-10-2u & 2Ny p=2p'y-2 - 201 - Pt - h'Ao™']. (26)
As to boundary conditions, we actually have only one condition: by defi-

nition Y(1) = 1. The second condition for ¥'(1l) must be obtained with the aid

of the differential equation (7) or relations equivalent to it.
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